Experiment of preparation ultra - fine - crystalline and nanocrystalline metal was performed using self - developed electromagnetic impulse high - pressure rapid solidification method 使用實驗室自行研制的電磁脈沖高壓快速凝固裝置,進行了制備超細晶、納米晶金屬的實驗。
Various present methods of preparation nanostructured materials are summarized and the theoretical analyses are made of preparation ultra - fine - crystalline and nanocrystalline metal using the rapid solidification method in this thesis 本文對國內外的各種制備納米固體材料技術進行了綜述,并對快速凝固法制備超細晶、納米晶金屬進行了理論分析。
Therefore , in this paper , two directional solidification methods , czochralski method and electron - beam floating zone melting method , were used to obtain such material . the directional solidifition microstructures of si - tasi2 system was performed using neophot - 1 , amray - 100b sem and jem - 2000cx tem analysis technique 本文采用切克拉斯基法( cz法)和電子束區(qū)熔法( ebfzm )兩種定向凝固方法制備該共晶自生復合材料;借助金相技術、電鏡技術、圖象處理技術等多種分析測試手段,考察了si - tasi _ 2共晶定向凝固組織和及其相應的工藝規(guī)范。
The intermediate - temperature sofc ( solid oxide fuel cell ) ’ s electrolyte with perovskite - type lsgm ( la _ ( 0 . 9 ) sr _ ( 0 . 1 ) ga _ ( 0 . 8 ) mg _ ( 0 . 2 ) o _ ( 3 - ) ) was synthesized using advanced pechini method and solidification method . the thermal and electrical properties of the sintered samples ( synthesized by two different methods ) were measured and compared by thermal expansion and ac impedance spectroscopy ; the phase transformation process and inner structure were measured and compared by xrd , dta - tg and ac impedance spectroscopy . the research results show that the electrolyte synthesized by advanced pechini method has several advantages , such as fine pre - powders , low sintering temperature , reduced or eliminated impurity phases and high conductivity etc . so , the apm is ideal method to synthesize lsgm 采用改進的檸檬酸法(以檸檬酸和edta乙二氨四乙酸為復合絡和劑,檸檬酸為燃料)和固相法分別制備了具有鈣鈦礦結構的中溫固體氧化物燃料電池的電解質材料lsgm ( la _ ( 0 . 9 ) sr _ ( 0 . 1 ) ga _ ( 0 . 8 ) mg _ ( 0 . 2 ) o _ ( 3 - ) ) ,用差熱?熱重分析( dta / tg ) 、 x光衍射分析( xrd ) 、交流阻抗譜技術( ac - impedancespectra ) 、比表面積分析( bet )和燒結收縮率曲線等手段對產物的熱分解過程、物相轉變和內部結構等進行了表征,并對由這些粉體燒結而成的固體氧化物燃料電池的電解質材料的電導率進行了檢測。